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Abstract. — The free-energy contribution of a polymer interacting with a bounding surface of a
general shape is obtained exactly through a multiple-scattering expansion. Two extreme cases of
the polymer interacting with a surface are considered, viz. an ideal polymeric chain sterically
excluded from the vicinity of the surface and an ideal polymeric chain adsorbed to the surface. In
both cases the thermodynamic properties of the system are obtained in the form of a convergent
expansion in powers of the local principal radii of curvature of the bounding surface.

Elastic properties of fluid bilayer membranes of surfactant molecules are essential for the
understanding of self-assembly processes in biological systems in general, as well as for
shape transformations, to which vesicles can be subjected by varying the external
constraints, in particular [1]. The bilayer elasticity is standardly approached through an
expansion of the free energy in terms of local radii of curvature up to the second order [1]. It
is interesting in this context to assess the consequences of adding a flexible polymeric chain
to the bathing solution, for the properties of the curvature expansion of the free energy.
Indeed the problem has recently received a lot of attention [2] and the emerging picture is
that even in the case of polymer adsorption the harmonic curvature expansion of the free
energy is preserved. The theoretical approach thus far [2] has been limited to considerations
of fixed geometries (e.g., spherical or cylindrical), that have fixed radii of curvature. The
polymer (with excluded-volume interactions) was modelled either in the framework of the
Cahn-de Gennes theory or of the modified scaling theory with added (contact) polymer-
surface interactions. The results were obtained in the form of a (constant) curvature
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expansion of the surface free-energy density, where the elastic constants were functions of
the contact polymer-surface interaction energy [2].

In this contribution we will set forth an approach, based on the Balian-Duplantier [3]
multiple surface scattering Green’s function formalism used recently in the analysis of the
related charged-surface problem [3], that will permit us to obtain the expansion of the free
energy in terms of local curvatures without any need to specify the underlying global
geometry of the bounding surface. We will thus be able to derive an expansion of the free
energy even if the principal curvatures vary along the bounding surface. We will use this
formalism to derive the free-energy local-curvature expansion for two extreme cases of the
polymer interacting with a surface, viz. an ideal polymeric chain depleted from the vicinity of
the surface (steric exclusion) and an ideal polymeric chain weakly (in the sense of ref. [4])
adsorbed to the surface.

We limit our discussion to the consideration of an ideal polymer interacting with a single
bounding surface whose curvature is a function of the surface coordinates. The bare Helfrich
curvature energy [1] of the surface has thus the form

1 1 1\, 5 1

7 2KC(S!dS(Rw R0)+KJdSR1R2, 1
where R,, R, are the two principal local radii of curvature, 1 /R, = (1/2)1/R; + 1/Ry) is the
mean local curvature, R, is the spontaneous curvature, K. is the elastic modulus and K is the
Gaussian-curvature modulus. The interactions between the polymer and the bounding
surface we consider here will be assumed to be of a contact type and can thus be represented
by a boundary condition satisfied by the polymer Green function. For contact interactions the
boundary condition is independent of the local curvature, which need not be the case for more

-~ realistic polymer-surface interactions [5]. If A~ refers to the number of beads of the polymer,

then the Green function G(R, R'; V") satisfies a diffusion-type equation [6]. The cor-
responding free energy can be written as

F=—-kT'In5(AN)= —kT 1n”d3Rd3R'G(r,R'; N, @)

where Z( V") is the partition function of the polymeric chain. Since it proves convenient to
work with Laplace-transformed quantities, we introduce them in the standard manner as,

eg.,

GR,R'; &)= -1 [asexpls VIGR, R'; 9),
2m g
and adopt the convention that all the quantities with the argument s relate to the Laplace
transforms of the same quantities with the argument .4~ The Laplace-transformed Green

function thus satisfies [6]

[VZ-s]GR,R';s)= —é(R—R'), 3

where the spatial dimensions are now measured in units of l/\/g,_where l is the step length.
The above equation has the form of the standard Helmholtz equation and its solution for
infinite space (we designate it as Go(R, R'; 8)) is well known.

After these formal preliminaries we are ready to treat the case where the Green function
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has to satisfy a boundary condition at the surface that has in the general case the
form

3G(R,,R"; s)

3n -kGR,,R';s)=0, 4)

a

where x is proportional to the strength of the polymer-surface interaction. In the above
equation and in what follows we adopt the convention that all the coordinates with Greek
indices relate to the bounding surface, thus R, stands for the radius vector R on the bounding
surface. The two limiting cases of the general boundary condition, viz. x > 0 and x < 0 with
large enough |« |, correspond to polymer steric exclusion and polymer adsorption to the
surface. In fact, as can be shown quite straightforwardly, the limit x — o corresponds
exactly to the case of G(R,, R';s) =0, which is the standard surface steric-exclusion
boundary condition. e

Since we have reduced our problem to the solution of the Helmholtz equation with a mixed
boundary condition at the bounding surface, we can use the method of multiple-scattering
expansion [3] which has already proved useful in the study of the properties of electric double
layers (in the Debye-Hiickel approximation) near curved surfaces of arbitrary shape [3]. The
Green function appropriate for the mixed-boundary-conditions problem, eq. (4), has been
derived by Balian and Bloch (compare eq. (I1.27) in the Balian-Bloch paper [3]) in the form of
a convergent expansion in local eurvature.

If we now insert their expression for the Green function into eq. (2), we get a series for the
polymer partition function that can be effectively resummed in a very elegant manner by
introducing an auxiliary function (F), as a double integral of the Green function over the

half-space defined by the bounding surface (the same definition is used in Balian and
Bloch [3]),

F(R,, Ry; s) = de3Rd3R’G0(R, R,;s)Gy(Rs,R'; 5). 5)
The resummed partition function can now be obtained in a very simplified form:
) = 50(s) +2 [ dS, UR., Ry; 9) = By (s) + 2T UR,, Ry; 9), ®)

where £, (s) = JJd3R d®R’' Gy (R, R'; s) and the surface part of the partition function (the

second term in the above equation) can be written as a trace of the operator UR,, R;; s) that
satisfies an integral equation

UR., R;; 5) ~ 2 [ dS,UR,, R,; 5)V,Go(R,, Ry; 5) = V,F(R,, Ry; 9), )

where VY = 3/dn, — k. One can immediately show, by perturbatively expanding the equation
defining the function U, that for the cases x = 0 and x — o, which in turn reduce to the
Neumann and Dirichlet boundary conditions, the limiting results for the Green’s function
coincide exactly with those derived by Balian and Bloch in a different fashion.

We proceed now to the limiting cases announced in the introduction and corresponding to
adsorption (x < 0) and exclusion (k > 0) of the polymer from the surface. For || >1 we
have V,— — « in eq. (7), that can thus be solved perturbatively for U in different orders of
the local curvature.

First of all we show how the local curvature of the bounding surface enters the equation
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for U. We defined F as
FR,, Ry 9) = [ [FRAR Go(R, R.; 9)GoRy, R'; 8) =

1[1 1f(%G®, R 3G, (R, , Ry; 5)
" ¥l 2([ on, ds, + | an, o)t

aGo(R R,; s) 3Gy (R, , Rg; s)
JJ on

) ds, ds, ] . 8)
Y

While evaluating the surface integral following the application of the Gauss theorem to eq. (3)
we have taken into account the fundamental discontinuity property of the Green function atr

the surface [3], i.e.

3G, (R,,R;s) 8GR, R.;s) 1
on, - on, t 9 oR, ~R.),

where R,' stands for the limit as R approaches the bounding surface from the bulk.

FR,, Rﬂ, s) now clearly has three terms of zero, first and second order in the normal
derivative of the Green function at the boundlng surface. The first term corresponds to the
(unnormalized) probability that the chain is anywhere in the half-space defined by the
bounding surface. The second term corresponds to the probability that the chain, going along
the surface, arrives at the point R, (or Ry), if it starts from any other point on the surface.
The third term corresponds to the chain that touches the surface at two distinct positions (R,
and R;) while going along the surface. It therefore corresponds to «in-plane bridging». That
the normal derivative of the Green function can be expanded into a series with respect to the
local curvature starting with a first-order term can be derived straightforwardly if we
approximate the surface at the point R, to its tangential plane. The equation of the bounding
surface S in the frame of reference of the tangential plane is z(z, y)=
= (1/2)@x?% /R, + y®/R;) + ..., where R, and R, are the two principal radii of curvature at the
point R, on the surface. (x,y) present the projected deviations from this point onto the
tangential plane. The calculations are performed by carrying out all the integrations with the
point w fixed, the integration with respect to w being performed last [3].

Evaluating the normal derivative of the Green function on the tangential plane, one thus
obtains (see ref.[3] for details)

3Go(R,, Ry;8)
on, -

1 (p)
5R (oV,) Go(p = |R, — Rg|).

The superscript (p) here and later on stands for the planar (zero curvature) approximation to
the superscripted quantity. We note here that while deriving the expression for
3G, (R,, Rg; s)/3n, one averages over all the directions of the principal curvature axes. The
next order term in the expansion of the normal derivative of the Green function is of the third
order in local curvature. Since it is clear now that F' can be expanded into a series with
respect to the local curvature of the bounding surface, we develop all the quantities entering
@
the equation defining the operator U in the same way. If F for i = 0,1 are simply the zero and
@
the first-order curvature terms of the F function, then F is somewhat more complicated,
containing the second-order term of F as well as the second-order terms of the local surface
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area element and the second-order term of the Green function (see Duplantier [3]) that enter
0)

(
the surface integral on the Lh.s. of eq. (7). The different orders F are thus obtained in the
form

(FR., Ry 5) = L
'z y8) = —F,
g 4s?
o) 3G,(R,, R,; (p) 3G, (R, R;; 8)
FR,,Ry; 5) = — 1 IL'—S)dSr‘*IMdSr' ,
2s2 on, on, ©
P,
@ 1 ([ 9Gy(R,,R,;s) 3G(R,,Rs;5) ®» (»
FR,, Ry 5) = [] - B 45,45, +
@) (© (p) (p) 0 2)
+[dS,UR,, R,;9) GoRy, Ry )+ [dS,UR,, B,5 ) Go(R,, Ry; 5),

@
where dS is the second-order curvature term of the local surface area element

@ ®) @
(dS = (1/2)(V2)’d S), while Go(R,, Ry; s) is the second-order curvature term in the
expansion of the Green function in the coordinate system defined by its tangential
plane,

(2)
azGo(R,,, Rﬂ; s)

2
Oz,

(p) 1
Go(R,, Ry; s) = 24 @Y

@
F represents now the effective in-plane bridging term, with the second and the third terms in
the last line of eq. (9) stemming from the curvature dependence of the kernel in eq. (7).
()
With these provisos we solve eq. (7) order by order in curvature (U, 1= 10,1,2) and obtain
simple expressions that we can use for the evaluation of the trace of U:

(© x
UR,,R,;s)= — m )
o K
J U(Ra?Rau 8)_ 2Rw32(x+sl/2) ’ (10)
@ 1 K 1 1
UR,,R,;s)= — K - - - .
( ) s%2(x + s'/2) [ 4R%s  8s(x +s'?) ( R RiR, )
The partition function is now obtained in the form
2
EN) = E@]I=2 _1[50(3) + 2IdSw ,20 UR,,R,; 8)]- (11)

The inverse Laplace transforms (designated by_# ~!) depend crucially on the sign of x. For
k > 0 the spectrum of U has no bound states and an expansion in series with respect to x!is
Possible. On the other hand, for x < 0 the presence of bound states in the spectrum of U
Prevents a simple expansion in terms of x~!. For the polymer sterically excluded from the
vicinity of the surface the main contribution to the partition function comes from the bulk
Part that scales as volume, while for the polymer adsorbed to the surface the main
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contribution to the partition function is the adsorption part that scales as the surface area.
Bearing this in mind, we are led to the following form of the free energy for the case of
surface-excluded polymer:

” 2 A 2
g(x>0)=x70+(“—")————l kT dem—(L‘)l é‘T[dSle+

V | 6x2(RE ) %
% leT<R2)1/2 1 1
= |———[dS.| = + -y 12
+( 4 ) 187/ J ‘”(R,ﬁ Rle) (2
where F, = — kT In [&®R, (R?) = A% and A/V is the monomer volume concentration.

The case of the adsorbed polymer leads in its turn to the following form of the free
energy:

[ N\ LEKT 1 N\ 2ET 1 1
(VZ —‘q + —_ —_ —_ | == —_— + ceey
e <0) 0 ( S )12|K|<Rz>IdS“’ R, ( S ) 6 JdS‘"(Rf RIRZ) (13)

where here

212 4~
exp[-——" l6“" ]IdS

x| - 6

Fo=—kT'In

is the part of the free energy corresponding to the surface-bound polymer partition
function [4] with surface monomer concentration equal to .17/S, where S = fdsS,, is the total
surface area. While deriving the above expressions for the free energy we implicitly assumed
the A7>>1 limit.

We recognize that the Gaussian-curvature term has the same sign for both extremes of k
values, while the signs of the first- and second-order mean curvature terms alternate for
different signs of «. Since, as fas as topology of the surface is concerned, the minimal value of
the integral [dS(1/R2) also increases with the genus of the surface, one can conclude that the
adsorbing polymer will favor proliferation of handles. A general conclusion of this type
cannot be drawn for the surface-excluded polymer.

The surface adsorption/exclusion act, however, quite differently on the renormalization of
the elastic constant (K,)—a consequence of the in-plane bridging of the polymeric chain along
the curved surface. The steric exclusion of the polymeric chain from the vicinity of the
surface stiffens the bounding surface, while the adsorption makes it proner to bending, in
general agreement with the conclusions by Brooks et al. [2]. This should lead to pronounced
modifications in the interaction of two flexible surfaces with polymers in between. The
adsorbing polymer should in this case promote bridging attraction [7] between the surfaces
as well as curvature destabilisation of the interacting surfaces. (The same twofold action, but
with signs reversed, was shown to exist also for screened electrostatic interactions [8].) Such
curvature instability has been predicted quite some time ago on very general grounds [9] and
is bound to play a decisive role in the vesicle shape transformations [1].

Similarly the linear curvature term that renormalizes the spontaneous curvature in eq. (1)
prefers bends towards the polymer-rich phase in the case of adsorption interactions, while
the exclusion favours bending away from the polymer phase. Localized weak adsorption ofa
polymer to a closed vesicle would thus severely affect its equilibrium shape through the
coupling between adsorption and bending.

The formal method presented here for assessing the effect of the polymer-boundary

J——




ea.
of

12)

on.
ree

13)

jon
tal
ed

fx
for
 of
he
pe

of
ng
the

in
ed
'he
ces
out
1ch
nd

¢))
ile
fa
the

ary

R. PODGORNIK: POLYMER-BOUNDARY SURFACE INTERACTIONS ETC. - 251

interactions on the elastic properties of the bounding surface is more general than those used
recently in the treatment of similar problems [2]. Its drawback lies in the fact that it can be
applied only to linear problems. Polymer-polymer interactions (as, e.g., excluded volume),
that have been recently dealt with in the framework of the Cahn-de Gennes and scaling
theories [2], can be included into the present linear theory through the use of variational
principles that preserve the linearity of the Green’s function equation but nevertheless
include also the effects of the polymer-bulk interactions. Also, the method presented here,
being complementary to other approaches(2], can be straightforwardly generalized to
persistent polymeric chains or to other polymer models for that matter, that can be described
in the framework of a Green’s function formalism.

* k %k

The author is grateful to Prof. B. DUPLANTIER for pointing out the limits of the assertion
(contained in an earlier version of the MS) that surface interacting polymer always favours
proliferation of handles. Indeed, in the case of surface-excluded polymer, this can be shown
only for the two lowest genuses, while for higher ones one does not really know.
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